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In lattices where atoms are bound by the neighboring atoms and forces, the study of lattice
vibrations can reveal information about the material’s properties. In this project, we will study
the vibrational modes of a 1D lattice of N atoms with the same mass m and nearest-neighbor
interactions by employing a combination of numerical methods. By utilizing RK4 time stepping
and FFT analysis, we explore the vibrational modes arising from various initial conditions and
boundary constraints. Noteworthy observations include the manifestation of expected normal modes
under specific perturbations and the implications of symmetric and random perturbations on mode
development. Furthermore, the study underscores the method’s adaptability, paving the way for
effortless exploration of diverse conditions and dimensions in lattice dynamics simulations.
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I. INTRODUCTION

Materials science and solid-state physics are inextrica-
bly linked to lattice vibrations, which have a significant
impact on the mechanical, thermal, and electrical prop-
erties of materials. The study of lattice vibrations can
provide information about thermodynamics, supercon-
ductivity, phase transitions, thermal conductivity, and
thermal expansion[1].

Given the importance, the many degrees of assump-
tions and subtleties in interaction cause numerous chal-
lenges in solving the system for vibrational modes. Such
discoveries are critical for understanding material behav-
ior under different situations, and they hold significant
potential for applications ranging from nanotechnology
to condensed matter physics. In such circumstances, a

convenient and adaptable method for studying dynamics
is highly valued.
In this project, we will be focusing on the monoatomic

lattice with atoms of the same mass (monoatomic lattice)
with the following objectives:

• Insights into Vibrational Modes: By simulat-
ing various initial conditions and boundary con-
straints, the project provides valuable insights into
the vibrational modes of the monoatomic lattice.

• Impact of various Perturbations: The study
investigates the effects of different perturbations,
including symmetric and random perturbations, on
the development of vibrational modes.

• Robustness of the Approach: We investigate
the impact of the time factor while analyzing the
developing modes and the consistency across differ-
ent trials.

II. THEORY

A. Lattice Vibrations

In the study of lattice dynamics, the movement of
atoms is often described as harmonic waves traveling
through the lattice. Each wave is fully defined by char-
acteristics like its wavelength, angular frequency, ampli-
tude, and direction of movement.[2] However, dealing
with wavelength can be complex due to its wide range
of values. To simplify this, a wave vector k is commonly
utilized. This vector aligns with the wave’s direction of
propagation and is normalized to have a magnitude equal
to 2π

λ .

B. Monoatomic 1D Lattice

In a monoatomic lattice, the atoms are identical,
and the crystal structure is straightforward, resembling
masses interconnected by springs, as depicted in Figure
1 by assuming that each atom in the lattice moves due
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FIG. 1. Monoatomic Lattice

FIG. 2. Diatomic Lattice

to interactions with its nearest neighbors. For instance,
in an array of coupled atoms, atom n would experience
forces from the adjacent atoms n− 1 and n+ 1[2, 3].
Let the mass of the atom be m, the equilibrium dis-

tance between any two atoms be a (Lattice Constant), Un

denotes the position of the nth atom and C denotes the
spring constant, then thethe equation of Forces acting on
atom n can be written as:

Fn = C(un+1 − un) + C(un−1 − un) (1)

With F = ma = mü, we can write the equation of
motion as:

m
d2un

dt2
= −C(2un − un+1 − un−1) (2)

We can look for solutions of the following form (ansatz
for normal mode):

un = Aei(kna−ωt) (3)

Applying equation (3) into (2), we get:

m
d2un

dt2
= −C(2un − un+1 − un−1)

−mω2 = −C(2− eika − e−ika)

−mω2 = −C(2− 2 cos(ka))

ω2 =
2C

m
(1− cos(ka)) (4)

This theoretical value of normal mode frequency will be
used to validate the result of our model.

We can extend this to diatomic lattice[4] by changing
the equation (2) as:

m
d2u2n

dt2
= −C(2u2n − u2n+1 − u2n−1) (5)

M
d2u2n+1

dt2
= −C(2u2n+1 − u2n+2 − u2n) (6)

where m and M are the two different masses of atoms
present as given in Figure 2.

C. Runge-Kutta 4th order method

The fourth-order Runge-Kutta method is a numerical
technique used for solving ordinary differential equations
(ODEs) of the form (notations adapted for context):

dun

dt
= f(un, y) (7)

where y is the dependent variable, t is the independent
variable (typically time), and f(t, y) is a function that
describes the rate of change of y with respect to t. The
equation (2) is the equation in use for .
Given a time step h, we can find un(t

i+h) from un(t
i)

from using the following steps:

k1 = hf(ti, un(t
i)).

k2 = hf
(
ti + h/2, un(t

i) + k1/2
)

k3 = hf
(
ti + h/2, un(t

i) + k2/2
)

(8)

k4 = hf(ti + h, un(t
i) + k3)

unt
i + h = un(t

i) +
1

6
(k1 + 2k2 + 2k3 + k4)

D. coupled RK4

In our case, the equation is of second order, and even
then, f(ti, un(t

i)) is not solely dependent on un(t
i). To

handle this, we can transform the second-order ODE into
a set of 2n coupled first-order ODEs. This involves intro-
ducing new variables and rewriting the original equation
as a system of first-order equations.
For each atom in the lattice, we introduce a new vari-

able representing its velocity vn, resulting in 2n variables
in total. Many coefficients in this system will be zero,
simplifying the computational burden. This transforma-
tion allows us to solve the problem numerically using
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techniques like the RK4 method while accurately cap-
turing the dynamics of the system.

The equation of motion (2) becomes:

fn
1 (t, u, v) =

dun

dt
= vn (9)

fn
2 (t, u, v) =

dvn
dt

= −C

m
(2un − un+1 − un−1) (10)

Here, since the equations and variables are coupled,
the equations in (8) becomes:

ku1 = hf1(t
i, u(ti), v(ti)).

kv1 = hf2(t
i, u(ti), v(ti)).

ku2 = hf1

(
ti + h/2, u(ti) + ku1/2, v(ti) + kv1/2

)
kv2 = hf2

(
ti + h/2, u(ti) + ku1/2, v(ti) + kv1/2

)
ku3 = hf1

(
ti + h/2, u(ti) + ku2/2, v(ti) + kv2/2

)
kv3 = hf2

(
ti + h/2, u(ti) + ku2/2, v(ti) + kv2/2

)
(11)

ku4 = hf1(t
i + h, u(ti) + ku2, v(ti) + kv3)

kv4 = hf2(t
i + h, u(ti) + ku2, v(ti) + kv3)

uti+h = u(ti) +
1

6
(ku1 + 2ku2 + 2ku3 + ku4)

vti+h = v(ti) +
1

6
(kv1 + 2kv2 + 2kv3 + kv4)

Each of the above quantity with an overline means its a
vector of size n.

III. IMPLEMENTATION

In our implementation, we will be using the program-
ming language Python using the libraries numpy to man-
age data structures, matplotlib package for plotting,
tqdm to track progress and scipy for FFT analysis.

Both the RK4 and coupled RK4 methods are imple-
mented from scratch, generalized to handle any dimen-
sion of 1D lattice. Considering that achieving the re-
quired resolution may necessitate small time steps, we’ve
incorporated the option for selective data saving to alle-
viate the potential hassle of storing all data. This feature
allows us to efficiently manage memory while retaining
flexibility in data collection according to specific require-
ments.There is also a code specifically designed to auto-
mate the production of animations depicting lattice vi-
brations based on simulation results, ensuring effective
visualizations.

For FFT analysis on simulation results, we conduct
the analysis on individual atoms to investigate their vi-
brational characteristics. By performing FFT on each
atom’s displacement data, we extract frequency informa-
tion and plot the results collectively. Additionally, we

identify the dominant mode of vibration for each atom
and are then compared with theoretical predictions to
assess the agreement between simulation and theory.

See the implementation in Github.

IV. EXPERIMENTS AND OBSERVATIONS

For our system, the simulation was conducted using 11
atoms, with the end atoms fixed as boundary conditions,
leaving 9 vibrating atoms. To simplify implementation,
the parameters of the lattice, C, m, and a, were assigned
a value of 1. We will be using k = π/a for the most
parts other than the study of dispersion relations. Given
that theoretical values are also calculated based on these
parameters, this choice ensures consistency between sim-
ulation and theory. All the results as well as different
experiment settings are stored in the Github where the
animations of vibrations can also be viewed as well the
parameters in use.

A. Normal Mode

To obtain normal mode, we apply the oscillation ansatz
given in equations (3) with t = 0 and let the system
evolve into the normal mode. For the same parameters of
C, m, a, and N , we can calculate the theoretical normal
mode frequency by using equation (4).

For our implementations, we will be using the ansatz
from equation (3) to generate the time series data for
each atom for the same time as the simulation and pass
them through the same process of analysis to get a fair
comparison. The developed normal modes are given in
Figure 3, and the comparison to the theoretical frequency
is given in Figure 4.

As you can see, due to the boundary conditions needed
for the time evolution of a finite Lattice, the atoms
close the boundaries, deviate from the expected value,
and influence other atoms to develop smaller yet distinct
modes.

B. Symmetric Perturbation

In this simulation, we perturbed only the central atom,
let the vibrations spread symmetrically across the lat-
tice, and observed the developing vibrational modes. The
FFT analysis result is given in Figure 5. You can also
see the symmetry in the dominant mode of each atom as
shown in Figure 6.

As expected from the inherent symmetry of the sys-
tem, we see modes symmetrically distributed around the
central atom. Since the odd number of atoms (2n + 1)
were let to vibrate, it was exactly (n+ 1) modes.

https://github.com/AdhilshaA/CP_lattice_vibration_project/tree/main/figures
https://github.com/AdhilshaA/CP_lattice_vibration_project/tree/main/figures
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FIG. 3. FFT obtained from simulating a normal mode

FIG. 4. Frequency of each atom compared with theoretical

C. Random Perturbation

Here, we gave three different random perturbations
to the system and observed the developing vibrational
modes. The FFT analysis results of these are given in
Figures 7 to 9.

As you can see, for N vibrating atoms, we get N modes
as expected. Furthermore, the modes developed in all
three trials are the same for the same system, confirming
that the modes are unique to the system of N atoms.

D. Consistency and Impact of Time

Across all trials, consistent observations reveal that
peaks occur at the same frequencies for the same sys-
tem, regardless of variations in the prominence of each
mode. See Figures 3, 5, 7, 8, 9 and even 10 (run for
much shorter time). This consistency indicates that the
implementation effectively identifies the system’s unique

modes across diverse scenarios, ensuring robust and reli-
able results.

Initial trials on shorter simulations revealed similar
peaks, albeit with lower peak resolution. This was at-
tributed to insufficient time for the system to reach a
balanced state among its various natural modes. From a
computational standpoint, the oscillations of each atom
over shorter periods may not encompass enough informa-
tion about all modes and their equilibrium states. This
limitation arises because a ’complete cycle’ oscillation
across all modes within a frequency range is constrained
by the smallest frequency and the initial perturbation.

This is clearly demonstrated in Figures 10 and 11,
where the former depicts a simulation of a shorter du-
ration compared to latter, which extends over a longer
period. Despite the difference in simulation duration, all
other conditions remain constant. This highlights the sig-
nificance of allowing simulations adequate time to evolve,
emphasizing the importance of collecting sufficient infor-
mation for accurate analysis and interpretation of results.
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FIG. 5. FFT obtained from simulating a symmetric perturbation

FIG. 6. Frequency of each atom compared in symmetric perturbation

V. RESULTS AND CONCLUSION

Given the system’s normal mode oscillation ansatz
given in equation (3), we were able to obtain the normal
mode frequency very close the theoretical values. Sym-
metric perturbations yielded modes symmetrically dis-
tributed around the central atom, reflecting the system’s
inherent symmetry. Conversely, random perturbations
lead to the emergence of all possible vibrational modes,
showcasing the system’s versatility and sensitivity to ini-
tial conditions.

In terms of model flexibility, this approach was able to
explore the dynamics of these different perturbations as
well as different size of systems, giving consistent results
across all trials while visualizing the vibrations at any
given time. Observing the system for a longer period of
time separates the modes as expected to obtain resolution
over the smaller peaks of vibrational modes.

this study highlights the efficacy of RK4 time stepping
and FFT analysis in unraveling the dynamics of lattice
vibrations. The method’s adaptability and versatility en-

able comprehensive exploration of various conditions and
dimensions, offering valuable insights into material dy-
namics and properties.

VI. LIMITATIONS AND FUTURE WORK

Future works can delve into testing diatomic lattice,
extending the implementation to extract dispersion rela-
tions, estimate bandgaps, estimate the speed of sound,
etc. Additionally, expanding to higher dimensions and
considering interactions beyond nearest neighbors are av-
enues for further exploration within this implementation.
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FIG. 7. FFT obtained from simulating random perturbation - trial1

FIG. 8. FFT obtained from simulating random perturbation - trial2

FIG. 9. FFT obtained from simulating random perturbation - trial3
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FIG. 10. FFT analysis over shorter simulation

FIG. 11. FFT analysis over longer simulation
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